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Abstract 
 
Cell entry by SARS-CoV-2 is accomplished by the S2 subunit of the spike S protein on the virion 
surface by capture of the host cell membrane and fusion with the viral envelope. Capture and 
fusion require the prefusion S2 to transit to its potent, fusogenic form, the fusion intermediate (FI). 
However, the FI structure is unknown, detailed computational models of the FI are unavailable, 
and the mechanisms and timing of membrane capture and fusion are not established. Here, we 
constructed a full-length model of the CoV-2 FI by extrapolating from known CoV-2 pre- and 
postfusion structures. In atomistic and coarse-grained molecular dynamics simulations the FI was 
remarkably flexible and executed large bending and extensional fluctuations due to three hinges 
in the C-terminal base. Simulations suggested a host cell membrane capture time of ~ 2 ms. 
Isolated fusion peptide simulations identified an N-terminal helix that directed and maintained 
binding to the membrane but grossly underestimated the binding time, showing that the fusion 
peptide environment is radically altered when attached to its host fusion protein. The large 
configurational fluctuations of the FI generated a substantial exploration volume that aided capture 
of the target membrane, and may set the waiting time for fluctuation-triggered refolding of the FI 
that draws the viral envelope and host cell membrane together for fusion. These results describe 
the FI as a machinery designed for efficient membrane capture and suggest novel potential drug 
targets. 
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Introduction 
 
The COVID-19 global pandemic is this century’s third coronavirus epidemic following SARS-
CoV in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, suggesting 
that coronaviruses will remain a global health threat for the foreseeable future. The responsible 
pathogen is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ~100-nm 
diameter betacoronavirus1 whose lipid envelope encloses a positive-sense single-stranded RNA 
genome complexed with the nucleocapsid (N) protein. The lipid envelope houses the spike (S) 
glycoprotein, the envelope (E) protein and the membrane (M) protein2. The S protein is a trimeric 
class I fusion protein that catalyzes entry into lung, nasal mucosa or small intestine cells and has 
two subunits, S1 and S23, 4. Following S1-mediated binding to host cell membrane Angiotensin-
Converting Enzyme 2 (ACE2) receptors and proteolytic activation at locus S2′ by TMPRSS2 on 
the plasma membrane (PM)5 or by endosomal cathepsins B and L6, S1 and S2 are thought to 
dissociate, releasing S2.  

Entry is the job of the S2 subunit, by fusion of the viral envelope and host cell membrane. 
To become fusion competent, S2 must first undergo a major structural transition from its prefusion 
state to the potent, fusogenic form, the extended fusion intermediate (FI)7, 8 which bears three N-
terminal fusion peptides (FPs) that capture the host cell membrane. Subsequent refolding of the 
fusion intermediate into its postfusion configuration9 pulls the viral envelope and target membrane 
together for fusion and delivery of viral genomic material10. 

The fusion intermediate is the unsheathed weapon of CoV-2 entry, but the mechanism and 
timescales of FI-mediated host cell membrane capture are unknown. Little is known about this 
critical machinery. While the prefusion and postfusion CoV-2 S protein structures are known from 
cryo-EM and x-ray crystallography3, 9, 11, 12, the FI structure is undetermined.  Extended 
intermediate states of class I fusion proteins have generally proved experimentally elusive, likely 
due to their estimated sec-min lifetimes, far shorter than the pre- or postfusion lifetimes7, 13, 14 . 
Indeed, no class I fusion protein intermediate had been visualized until very recently, when the 
HIV-1 gp41 intermediate, the parainfluenza F intermediate and the influenza HA2 intermediate14-

16 were visualized with cyro-EM for the first time.   
The spike protein is a target for vaccines, therapeutic antibodies and other antivirals. Most 

current recombinant neutralizing or vaccine-elicited antibodies to CoV-2 bind S117-20. Viral fusion 
inhibitors targeting S212, 21 and the fusion-executing subunits of other class I fusion proteins have 
been developed, including one FDA-approved drug against HIV22-24. Importantly, recently 
emerged CoV-2 variants harboring spike protein mutations, B.1.351 (South African variant) and 
P.1 (Brazilian variant), escaped from two S1-targeting antibodies one of which has FDA 
emergency authorization, whereas the efficiency of S2-targeting antivirals was unaffected25. 
Moreover, S2 is conserved among coronaviruses26. Thus, unveiling the mechanisms of the CoV-2 
S2 fusion intermediate will be vital in the search for robust and pan-coronavirus antiviral drugs.  

Detailed computational studies of the CoV-2 FI and the kinetics of FI-mediated membrane 
capture are unavailable, to our knowledge. However the prefusion S protein was atomistically 
simulated27-29, one study revealing a highly flexible prefusion structure due to three hinge-like 
regions, consistent with cryo-ET28. Membrane binding by the isolated FP was simulated30-32, 
including Ca$%-dependent binding which involved the conserved coronavirus LLF motif in the N-
terminal FP helix30. A coarse-grained model of the whole virion was developed33. For other class 
I fusion proteins, a model structure of the Ebola GP2 extended intermediate was constructed34 and 
local transitions of the influenza HA and HIV gp41 intermediates were modelled35, 36.  
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Here, we constructed a full-length structural model of the CoV-2 FI by extrapolating from 
known CoV-2 pre- and postfusion structures. The model suggests a “loaded spring” mechanism 
triggers the prefusion-to-FI transition, similar to that for influenza HA thought triggered by folding 
of the B-loop into a helix37. We studied membrane capture by the FI, using all-atom (AA) and 
MARTINI coarse-grained (CG) molecular dynamics (MD) simulations to access timescales up to 
a ms. Simulations showed the FI is highly flexible, subject to large orientational and extensional 
fluctuations due to three hinges in the C-terminal base closely related to the prefusion hinges28. 
These fluctuations greatly increased the volume swept out by the FI, helping it capture target cell 
membrane. A critical N-terminal amphiphilic helix in the FP mediates membrane binding, but we 
find FP-only simulations severely mispresent the kinetics, as membrane capture is far slower in 
the native structure with the FP attached to the FI. Our CG simulations suggest FI-mediated 
membrane capture requires ~ 2 ms, a critical step on the pathway to fusion. In addition to 
facilitating membrane capture, we propose that large FI fluctuations set the timing of fluctuation-
triggered FI refolding on the pathway to membrane fusion. Our work identifies several novel 
potential drug targets. 
 
 
Results 
 
Model of the CoV-2 spike protein fusion intermediate 
Entry of SARS-CoV-2 is catalyzed by the trimeric S protein, consisting of three S1 heads sitting 
upon a trimeric S2 stem3.  Following binding of S1 to the host cell ACE2 receptor5, S1 dissociates 
from S238 and the prefusion S2 trimer undergoes a major structural transition to its potent, 
fusogenic form, the fusion intermediate (FI)7 (Figure 1a).  

We predicted the structure of the FI based on information from the partially solved pre- 
and postfusion cryo-EM structures9 (Figures 1b,c). A natural question is whether formation of the 
FI from its prefusion state uses a load spring mechanism similar to that used by influenza HA for 
the analogous transition37. We hypothesized that in S2 a transition converts the prefusion heptad 
repeat 1 (HR1) domain into a continuous alpha helix, itself continuous with the downstream central 
helix (CH). That is, all unstructured loop domains in HR1 become helical and rotate like torsional 
springs, straightening HR1 (Figures 1a,d). The result is a three-helix HR1-CH coiled coil in the FI 
trimer, the mechanical backbone of the FI. The hypothesis is tantamount to assuming CH and HR1 
adopt their postfusion structures in the FI, since the postfusion HR1 and CH are continuous helices 
in a trimeric coiled coil9 (Figure 1c).  

The S2′ site is assumed cleaved before this transition, exposing the FP N-terminus ready 
for host membrane capture, consistent with CoV-2 lung cell entry being blocked by inhibition of 
the serine protease TMPRSS2 that cleaves S2′ at the host cell plasma membrane5. This cleavage 
disconnects the golden peptide (GP) domain, but GP remains physically attached to S29. (We 
tested an uncleaved model with connected GP and FP, but the FPs were sequestered and unable to 
access the target membrane, Figure S1.) 

We assumed the β-hairpin (BH) domain adopts its postfusion configuration in the FI. 
Straightening of HR1-CH pulls these domains away from their prefusion locations and would leave 
large destabilizing cavities in BH, favoring transition to the postfusion configuration where BH is 
raised to fill the cavities and assembles into a pyramidal base (Figure 1e). The same is assumed of 
GP, since a GP β-strand interacts strongly with an antiparallel β-sheet in BH (Figure 1a). GP also 
contributes two small helices, and a long helix in a CH coiled coil groove completing a six-helix 
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bundle (Figures 1a, e) providing structural support at the base of the CH-HR1 backbone (see 
below).  

Downstream of BH the refolding hinge (RFH) domain, remote from the loaded springs, 
was taken as the prefusion structure, while we used the HR2 structure of SARS-CoV from NMR39 
whose HR2 sequence is the same as that of CoV-212. The unknown TM and CT structures were 
predicted by QUARK40.  

These components were integrated into the predicted CoV-2 FI structure shown in Figure 
1b (see Methods). The model implies that subsequent refolding of the FI to the postfusion 
conformation occurs by the unstructured N-terminal loop of the refolding hinge (RFH) domain 
folding into BH by contributing a β-strand to an antiparallel β-sheet (Figures 1a, f). The remainder 
of RFH folds back as a leash packing a GP-CH groove in the six-helix bundle, ending in a small 
helix that attaches between the two small GP helices of the other two protomers, oriented almost 
perpendicular to the HR1-CH backbone. Refolding is completed when the helical HR2 becomes 
partially unstructured to pack a second leash into a HR1-CH groove and supply one helix to a six-
helix postfusion bundle with HR1, the fusion core9.  

.  
All-atom simulation of the fusion intermediate 
Using complementary atomistic and coarse-grained MD methods, we tested the FI model of Figure 
1b and measured its configurational statistics and dynamics (see Methods).  

During ~ 0.4 µs of AA simulation the basic secondary structure remained unaltered (Figure 
S2), lending credibility to the model. Far from the rigid extended object one might anticipate given 
its long helical domains (Figure 1b), the FI was highly flexible and underwent large configurational 
fluctuations, adopting bent configurations without structural damage (Figure 2). The structural 
robustness was due to energy-absorbing features. The RFH-HR2 base region downstream of the 
BH domain was highly flexible, allowing large tilt (Figure 2b and Supplementary Movie 1). 
Relative to the prefusion structure the three RFH helices, known as the stem helices, became 
splayed with separated N-termini, in an inverted tripod suspension system that buffered large 
displacements of the upstream BH and backbone. The HR2 helices became partially unstructured, 
a structural plasticity that helped the FI tilt to greater angles at the membrane (Figure 2b).  

 
Three hinges endow the fusion intermediate with high flexibility 
Next we measured longer time FI dynamics using MARTINI CG simulations which fix the 
secondary structure but access timescales two orders of magnitude beyond those accessible with 
AA.  

In 40	µs total running time over 5 runs, the FI exhibited large configurational fluctuations 
as in the AA simulation, bending and reorienting over a wide range of angles (Figures 3a,c). To 
quantify the flexibility we measured the curvature statistics along the FI (Figures 3b, S3, 
Supplementary Movies 2,3 and Methods). This procedure identified three high flexibility hinge 
regions in the base, with similar mean magnitudes of curvature and large fluctuations (Figure S4). 
Mapping back to the atomistic structure located the hinges as unstructured loops at the BH/RFH, 
RFH/HR2 and HR2/TMD interfaces, respectively (Figures 3b,c).  

These hinges have roughly the same locations as three hinges identified in the prefusion 
CoV-2 S protein by a study combining cryo-ET and  MD simulations28. Thus we adopt the “ankle, 
knee, hip” notation of that study. However, the hip hinge (RFH/BH interface) in the FI structure 
is more flexible than the prefusion hip due to the significantly altered RFH structure with splayed 
stem helices (Figure 2b).   
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Large fluctuations of the fusion intermediate lead to a large membrane capture volume  
The first task of the unleashed FI is thought to be capture of the host target membrane by insertion 
of the fusion peptides at the protomer N-termini. Due to its flexibility the FI extension ranged from 
~ 21-30 nm (mean ~ 26 nm), its orientation varied over angles ~ ±60° to the membrane normal, 
and the FPs in consequence swept out a volume ~ 25,000 nm1 at rate ~ 750 nm1	µs23 (Figures 
3d,e, 95% of sampled locations). 
 Thus, due to the flexible base hinges combined with the large reach of the HR1-CH 
backbone, the FI accesses a substantial capture volume, equivalent to that of a ~ 36-nm-diameter 
sphere. Following dissociation of S2 from the S1/ACE2 complex, this may help the virus rapidly 
reconnect with the host cell and limit refolding back into the virion membrane in a postfusion 
configuration without host cell contact. Indeed, postfusion spike proteins were observed by cryo-
ET on intact SARS-CoV-2 virions41.  
 
Structure and dynamics of the membrane-bound fusion peptide  
We used a multiscale approach to study the secondary structure and spatiotemporal statistics of 
the membrane-bound FP removed from its host FI (Figure 4a). The FI model of Figure 1b assumed 
the prefusion FP, but once bound its structure likely changes in the radically altered membrane 
environment. Thus we used CG MARTINI MD to bind and equilibrate the bound FP (24 µs total), 
followed by 2 µs of AA simulation to realistically evolve the bound secondary structure (Figure 
4b).  
 During the AA simulation the secondary structure evolved (Figures 4b, c and 
Supplementary Movies 4,5). The N-terminus helix barely changed, but the two C-terminal helices 
merged into one. (The mean total helix content was 35%, compared to ~20% from circular 
dichroism spectroscopy42, a difference possibly explained by the differing simulated and 
experimental membrane compositions.) The equilibrated helices were amphiphilic and anchored 
the FP to the membrane with hydrophobic and hydrophilic residues oriented towards and away 
from the membrane, respectively (Figures 4d,e).  

In an 80 µs CG simulation we then measured the statistics of the bound, equilibrated FP 
(Supplementary Movies 6,7). The depth of residues decreased somewhat (Figure S5a), and the C-
terminal helix became repeatedly unanchored (Figure S6). The bound FP had rms length ~ 1.5 nm 
and width ~ 0.9 nm, defined as the greater and smaller of the gyration tensor eigenvalues in the x-
y plane, while the rms thickness was ~ 1.0 nm (Figures 4f, S7 and Methods). The FP extended 
with the anchored helices at either end, roughly speaking, as the length was strongly correlated 
with their separation. The radius of gyration autocorrelation function revealed a configurational 
memory time of ~ 270 ns (Figure 4g), with similar times for the length, width and thickness (Figure 
S8).  
 
Measurement of fusion peptide-membrane binding rate constant  
The target membrane is captured by insertion of the fusion peptide. To quantify the binding 
kinetics, we removed a FP from its FI host and measured the binding rate constant between two 
membranes separated by ℎ = 5.5 nm (Figure 5). The binding time itself is not an invariant quantity,  
as it depends on the proximity of the membranes.  

Defining a collision as an approach to within the rms FP end-to-end distance, 
𝑅9:	~	1.6	nm, the FP collided ~ 27 times per µs with the membrane before irreversibly binding 
(Figure S9). Thus, effects of initial condition dependence and diffusion-control were negligible43. 
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Averaged over 10 CG MARTINI simulations the unbound probability decayed exponentially with 
time constant 𝜏>?@A~	4.0	 ± 0.6	µs (Figure 5a). The binding rate constant 𝑘>?@A is defined by an 
imagined situation with a solution of FPs at density 𝑐9:  contacting a membrane, such that 
𝑑𝜌/𝑑𝑡	 = 𝑘>?@A	𝑐9: where 𝜌 is the areal number density of bound FPs43. From the binding assay,   

𝑘>?@A9: =
ℎ

2	𝜏>?@A
≈ 0.7	nm	µs23 

where the factor of 2 reflects the two membranes.  
Importantly, binding was mediated by the N-terminal helix of the FP, which provided first 

contact with the membrane during a binding event (Figure 5b and Supplementary Movie 8). Since 
cleavage at the S2′ site would expose this helix, this is consistent with this cleavage being required 
for viral entry5.  
 
The fusion intermediate captures target membrane on a millisecond timescale  
Next we studied membrane capture by the full FI (Figure 6a). Surprisingly, membrane binding 
was so much slower than suggested by the binding kinetics of the removed FP (Figure 5) as to be 
unobservable on available computational timescales. However, we observed binding of a truncated 
FI, from which we inferred a membrane capture time by the full FI of ~ 2ms.  

We simulated the full FI in the presence of a target membrane 20 nm from the viral 
membrane (Supplementary Movie 9). Enabled by its high flexibility hinges, the FI adopted highly 
bent shapes in which the FPs were oriented toward the membrane (Figure 6a). However, we 
recorded no FP-mediated binding events during a total ~ 300 µs of CG simulation over 20 
independent runs (see Methods). Thus, binding is much slower when the FPs are attached to the 
FI. The FP-only binding kinetics are unrepresentative, as they suggest the FI will bind at rate ~ 
𝑘>?@A9: 	𝑐9:3 (0)  where 	𝑐9:3 (0)~1/Δ𝑧  is the 1D FP density evaluated at the membrane and 
Δ𝑧~	10	nm	is the spread of FP N-terminal helix distances from the membrane (Figure S10). This 
yields a binding time 𝜏>?@A	~	Δ𝑧/𝑘>?@A9: 	~	15	µs, clearly a huge underestimate. 

It is unclear if binding is computationally accessible even with CG dynamics, given that 
longer than ~ . 3	ms is required. Thus we accelerated the kinetics by truncating the FI, excluding 
all domains downstream of HR1. We measured the binding time of this partial FI, consisting of 
HR1, CR and FP domains only, between two membranes separated by 8.3 nm (Figure 6b and 
Supplementary Movie 10). In two of six runs each lasting 160 µs, the membrane was captured by 
insertion of the N-terminal helix of one FP, after 23 µs and 133 µs.  (In another case, binding was 
followed by unbinding after ~42 µs.) This implies a best estimate of ~390 ± 280 µs for the mean 
time for the partial FI to bind in this assay (see the Supporting Information, SI).  

To translate this result to binding of the full FI, we measured the fractions of time for which 
one of the three FP N-terminal helices lies within 1 nm of the membrane. The full FI satisfied this 
criterion ~ 5-fold less frequently than did the partial FI (~0.07% vs. ~0.33%, Figure 6c and 
Methods), suggesting membrane binding is ~ 5-fold slower than in the partial FI assay. Thus we 
estimate the target membrane is captured by the full FI after ~ 2 ms.   

Finally, to verify the full FI is capable of maintaining a bound state, we enforced binding 
by pulling the FP of an FI into the membrane (Figure 6d). The FP remained stably bound for all 
of an 8 µs simulation.  
 
Fusion peptides and connecting regions form a disordered cluster  
These results show that the ability of the FP to access target membrane is strongly constrained by 
its local environment in the FI. In the CG simulations this environment was a disordered cluster 
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that the FPs and neighboring CR domains organized into, laterally extended at the N-terminal end 
of the HR1-CH backbone (Figure 6e). We call this the head of the FI. Two of the three FP N-
terminal helices resided at one end of the head, and one more exposed helix at the other. With the 
host membrane ~ 20 nm away, likely imposed by the earlier S1-ACE2 binding episode, the FI is 
severely bent (Figure 6e). The lateral orientation of the head appears optimal for presenting the 
helices to the membrane for binding in this bent configuration.  
 
 
Conclusions  
 
The outbreak of Covid-19 saw rapid efforts to characterize the pre- and postfusion SARS-CoV-2 
spike protein structures3, 9, 11, 12, but the structure of the fusion intermediate (FI) that facilitates 
fusion and entry remains unknown and the pathway to fusion and entry is poorly characterized. 
The first step on this pathway is capture of the host cell target membrane by the FI, but the 
mechanism and timescale are unknown for CoV-2 or indeed any coronavirus.  

Here we built a full length model of the CoV-2 FI, extrapolating from pre- and postfusion 
structures9 (Figure 1a). From coarse-grained simulations we inferred a FI-mediated membrane 
capture time of a few ms. Macroscopically this is fast, suggesting that therapeutic strategies 
targeting the FP are limited by a small ~ ms window during which the FP is exposed, and that 
targeting the refolding process12, 21, 44 may be more fruitful. However, a ms timescale is very long 
from a computational perspective: given our computational resources, membrane capture would 
require several hundred years of atomistic simulation (see Methods), and so is observable only 
with coarse-grained MD methods. These membrane binding rates were overestimated ~ 2 orders 
of magnitude by simulations with the FP removed from its host fusion protein, although a 10 
residue N-terminal helix directing and maintaining FP binding was identified (Figure 5b) in accord 
with a recent study30. Simulations of isolated viral fusion peptides are commonly implemented30-

32, 45, but our results suggest they should be interpreted with caution as the fusion peptide 
environment is radically altered when attached to its host fusion protein.   

Atomistic and coarse-grained simulations presented a picture of the FI as a machinery 
designed to efficiently capture membrane (Figure 7). The FI suffered large bending and tilting 
fluctuations due to 3 highly flexible hinge regions (Figures 2, 3, 6), similar to 3 hinges identified 
in the prefusion structure that were proposed to aid receptor binding28. We suggest the hinges are 
most critical to the FI. Large fluctuations may aid capture of host cell membrane by enlarging the 
region accessible to the FPs at the FI terminal (Figure 7c), and may help to coordinate capture by 
multiple FIs at different distances. Indeed, influenza, parainfluenza and HIV-1 appear to use 
several FIs 14, 16, 46. Further, by allowing the ~25 nm long FI to bend significantly, the extreme 
flexibility may facilitate the prefusion-to-FI transition even in the confined circumstances of a 
nearby host cell membrane (Figure 6a) and allow the FI to tilt its head and present the FPs directly 
to the target membrane (Figures 6e and 7c). A milder flexibility was observed in the prefusion HA 
of influenza, which was reported to bend through ~25R  mediated by a linker between the 
ectodomain and TMD47.   

Following binding of the FI to the target membrane on a ms timescale, the next step on the 
pathway to fusion and cell entry is refolding of the FI that pulls the viral and target membranes 
together. What sets the timing of refolding? Refolding requires a major structural transition of the 
RFH domain, which folds into the GP domain and the CH-HR1 backbone (Figure 1a). In AA and 
CG simulations the RFH domains had a highly dynamic structure, permitting large bending 
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fluctuations of the hip hinge at the RFH/BH interface (Figures 2 and 6a). This suggests the 
refolding time may be the waiting time for a rotational hip hinge fluctuation sufficiently large to 
destabilize one of the splayed RFH helices into an unstructured loop (Figure 7d). The loop would 
be highly susceptible to GP-chaperoned refolding. FI refolding and the drawing together of the 
host and viral membranes may be mutually reinforcing elements in a cooperative process, as a 
smaller membrane separation presumably favors refolding, while refolding decreases the 
membrane separation.  

As the machinery that achieves cell entry, the FI is a natural therapeutic target. A number 
of candidate drugs have targeted the refolding step. HR2-derived peptides inhibit fusion by SARS-
CoV-2 and MERS-CoV, presumably blocking formation of the HR1-HR2 six-helix fusion core12, 

21, 48. Their efficiency as fusion inhibitors is insensitive to mutations in the spike protein25, 
suggesting potential as robust antiviral drugs.  

Understanding the mechanisms of such candidate drugs and discovery of new FI-targeting 
drugs will be helped by establishing the structure and dynamics of this elusive intermediate. For 
example, another potential target is the golden peptide (GP) domain extending from the S1/S2 to 
the S2′ cleavage site (Figure 1). In addition to its structural role as a stabilizing socket for the CH-
HR1 backbone (Figure 7a), GP chaperones RFH refolding (Figure 7d). First, GP helps initiate 
RFH refolding by providing the β-strand that the RFH N-terminus loop folds onto as a parallel β-
strand.  Second, GP supplies a groove with the neighboring CH helix into which the RFH leash 
packs, continuing refolding. Third, a small RFH helix is pinned by the GP catch, a U-shaped 
sequence including 2 small helices, that may rectify zippering of the RFH leash by preventing its 
unravelling from the groove. Thus, GP- or RFH-derived peptides could inhibit FI refolding by 
binding the RFH or GP domains. Such peptides might also stabilize the short-lived unfolded FI 
for visualization.  

Interestingly, a recent study identified an 8-residue region in the prefusion RFH stem helix 
as the epitope of two cross-reactive monoclonal antibodies49. This region becomes the small RFH 
helix that engages the GP catch during refolding, together with the four downstream residues. Thus, 
the antibodies may neutralize CoV-2 by binding RFH and interfering with the GP catch that 
rectifies RFH refolding. Our simulations suggest another possibility is that binding of the RFH 
stem helices in the FI alters their dynamics and lowers the hip hinge flexibility, with possible 
consequences for membrane capture and/or refolding. This would be similar to the effect of 
antibodies targeting the linker domain adjacent to the TMD of HA, which reduced the linker 
flexibility and suppressed orientational fluctuations 47.   

In summary, the extended FI is the fusogenic form of the spike protein that captures host 
cell membrane for fusion and entry and is a critical but relatively unexplored therapeutic target. 
Our model suggests a loaded-spring mechanism generates the FI from the prefusion structure, 
related to the mechanism for HA of influenza15, 37 . The FI has unexpectedly large bending 
fluctuations that help it capture membrane in a few ms and may trigger the refolding transition that 
draws the viral envelope and host membranes together for subsequent fusion (Figure 7). These 
results provide an account of a critical episode during cell entry and offer a framework for rational 
design of new therapeutic strategies to disable the FI.  
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Methods 
 
Building a complete structure for the fusion intermediate of the SARS-CoV-2 spike protein. 
The primary sequence of the SARS-CoV-2 S protein was obtained from the NCBI database 
(GenBank: MN908947). We first built the HR1-RFH portion of the FI (including the associated 
GP domain). We used Modeller50 with two specified templates: the postfusion structure (PDB: 
6XRA) for HR1-BH and GP, and the prefusion structure (PDB: 6XR8) for RFH. Several 
constraints including 3-fold symmetry and preservation of secondary structure were specified. The 
C-terminal domains (HR2, TMD and CT) were then appended to the HR1-RFH portion one by 
one using Modeller. The source for HR2 was a SARS-CoV HR2 NMR structure (PDB: 2FXP), 
while the TMD/CT structure was predicted by the QUARK server by providing the primary 
sequences. The FP and CR were then extracted as a whole from the prefusion structure (PDB: 
6XR8) and appended to the HR1 domain in the FI with an arbitrary angle using Pymol. Finally, a 
complete GP structure was made in the FI using Modeller, by appending the N-terminal portion 
(residues 686-702) and C-terminal portion (residues 771-815) of the prefusion structure to the 
solved postfusion GP (residues 703-770).  
 
Multiscale molecular dynamics simulations. To simulate the FI and its FP we used two 
complementary molecular dynamics (MD) approaches, all-atom (AA) and coarse-grained (CG) 
MARTINI. Pure DPPC membranes represented the viral envelope and the host cell membrane for 
simplicity. All simulation systems were solvated with 150 mM NaCl at neutral pH. Each 
simulation system was energy-minimized and equilibrated before the production run, which was 
performed in the NPT ensemble at 1 bar and 310 K using GROMACS 2019.651, 52. The AA 
simulation of the FI (Figure 2) required one day of computation to run the FI for 10 ns. At this rate, 
~ 500 years would be needed to achieve the ~ 2 ms timescale of membrane capture (Figure 6c). 
For details of the simulations and the analysis see SI.  
 
All-atom simulations. For the FI simulation (Figure 2), the FI model structure (Figure 1b) was 
placed in a planar lipid bilayer in a 16 × 16 × 43	nm1 box using the CHARMM-GUI membrane 
builder53.  The production simulation was run for 406 ns using the CHARMM36 force field54, 55. 
Secondary structure was identified using the dssp algorithm56, 57.  

To simulate the membrane-bound FP (Figure 4b), the final configuration of the FP and the 
membrane to which it was bound in a given CG FP binding simulation was converted to atomic 
resolution in CHARMM36 force field54, 55 using the backward utility58. The production simulation 
was run for 2 µs. The membrane insertion depth of each FP residue was defined as the vertical 
distance between the residue center of gravity (COG) and the COG of the POV groups in the 
membrane leaflet to which the FP was bound. 
 
Coarse-grained simulations. All running times reported here are 4 times the raw MARTINI 
running time, to compensate for the faster sampling of the MARTINI model59. Time-dependent 
data in MARTINI simulations were analyzed after adjusting in this fashion.  

For the FI simulations in the absence of a target membrane (Figure 3), the FI model 
structure (Figure 1b) was first mapped into the MARTINI CG representation using the martinize 
utility60, 61 and then placed in a planar membrane in a 30 × 30 × 50	nm1 box using the insane 
utility62. Five production simulations starting from the same equilibrated system were run for 8 µs. 
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For the isolated FP-membrane binding assay (Figure 5), the atomistic structure of the FP 
was extracted from the prefusion cryo-EM structure (PDB: 6XR8) and coarse-grained into 
MARTINI representation. Then the FP was placed ~1 nm above a planar bilayer in a 
7 × 7 × 10	nm1 box. By implementing periodic boundary condition, this is equivalent to using 
two planar membranes separated by ~5.5 nm. The C-terminal carboxyl group was neutralized as 
it connects to the CR in the full-length FI. Ten 24 µs parallel runs were performed. Binding events 
were identified by comparing the COGs of the FP and the PO4 beads in each membrane leaflet 
(see SI). 

To simulate an equilibrated FP bound to a membrane (Figure 4), the final configuration of 
the FP and the membrane to which it was bound in the AA simulation was coarse-grained into 
MARTINI representation The production simulation was run for 80 µs. In a variation of this 
procedure, the FP C-terminal helix was transformed to an unstructured loop by changing the 
secondary structure file of the FP, an input to the coarse-graining utility. We then measured the 
membrane insertion depth of each residue, gyration tensor, radius of gyration, length, and width 
of the FP (see SI). 

For ten of the simulations of the FI interacting with a target membrane, ten snapshots from 
three FI simulations without membranes were used as initial conditions, in which the FI 
ectodomain protruded less than 20 nm normal to the membrane. Another pre-equilibrated planar 
membrane (run for 4 µs) was placed 20 nm above the membrane anchoring the FI and this 
configuration was run for 8 µs. These runs were used to calculate the probability distributions of 
Figure 6c. Ten additional simulations (each lasting 22.4 µs) used a biased initial condition with 
the COG of the nearest N-terminal FP helix within 1 nm of the membrane and the unpaired helix 
facing the membrane. Here, the membrane position was defined as the mean location of all PO4 
beads in the lower leaflet of the upper membrane.   

To pull a FI-attached FP into a target membrane (Figure 6d), an initial condition was chosen 
with the nearest unpaired N-terminal FP helix lying within 1 nm of the membrane. The helix was 
then pulled towards the target membrane at speed 2.5 nm/µs for ~1.2 µs, until the COGs of the 
helix and membrane were separated by ~0.1 nm in the 𝑧 direction. The pulling force was then 
released, and the simulation was run for 8 µs. 

For simulations of membrane binding by the partial FI (Figure 6b), the structure of the HR1, 
CR and FP domains in the MARTINI CG representation was extracted from the final configuration 
of a FI simulation. This partial FI was positioned above a planer bilayer in a 20 × 20 × 13	nm1 
box with periodic boundary conditions, equivalent to two planar membranes separated by ~8.3 nm. 
The C-terminal carboxyl group was neutralized. Six 160 µs parallel runs were performed. Binding 
events were identified similarly to the isolated FP assay (see SI). To infer the binding time of the 
full FI from the measured partial FI binding time, we assumed the binding probability per unit time 
for a given FP-CR-HR1 configuration is independent of the remainder of the FI.  
 
 
Data availability 
 
All simulation data supporting the findings in this paper are available from the corresponding 
author (bo8@columbia.edu) upon reasonable request. The structure of the model of the SARS-
CoV-2 spike fusion intermediate presented here is available at https://github.com/RuiSu11/cov-
2_public  
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Figure 1. Model of the SARS-CoV-2 spike protein fusion intermediate 
(a) Model of the fusion intermediate (FI) of the CoV-2 spike (S) protein, schematic. One protomer 
of the S trimer is shown. Schematics of the pre- and postfusion S2 states from the known structures, 
other than unknown regions (boxed). Details of BH and adjacent domains, at right. Following 
dissociation of S2 from S1, the unstructured pre-fusion HR1 loops become helical (loaded spring 
release), giving the HR1-CH backbone that thrusts the FPs toward the host cell membrane. The FI 
subsequently refolds into the postfusion structure, driven by structural changes in RFH and 
chaperoned by GP, with RFH and HR2 providing leashes that pack the HR1-CH backbone grooves.   
(b) Model of the FI of the CoV-2 spike (S) protein, exact structure. Source structures for each S2 
subunit domain are indicated, either CoV-2 prefusion (PDB: 6XR8), CoV-2 postfusion (PDB: 
6XRA) or HR2 of CoV (PDB: 2FXP). Transmembrane domain (TMD) and cytoplasmic tail (CT) 
structures predicted by QUARK. 
(c) Comparison between predicted FI structure and known crystal structures of the prefusion (PDB: 
6XR8) and postfusion (PDB: 6XRA) CoV-2 S2 subunit. One protomer highlighted in color. 
Dashed lines: missing domains from partially solved crystal structures.  
(d) Details of loaded spring transition.  
(e) β-hairpin (BH) domains in the known prefusion and predicted FI structures (boxed regions of 
(c)). The RFH domain is omitted from the FI BH for clarity. Following the loaded spring transition, 
HR1, CR and FP (shown faint in the prefusion BH) vacate their prefusion locations in BH. The 
resultant cavity (arrow) would presumably be unstable. We assume the FI adopts the more compact 
postfusion BH structure (right).   
(f) The golden peptide (GP) domain chaperones refolding of the fusion intermediate (FI) into the 
postfusion structure. Blowups of boxed regions in (c) are shown. Refolding of the refolding hinge 
(RFH) domain is guided by GP. RFH forms a parallel β-strand with GP (red circle), the RFH 
unstructured portion packs the CH-GP groove, and RFH helices interact with two GP helices.  
Colored BH and CH belong to one protomer; colored RFH belongs to a different protomer.  
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Figure 2. All-atom simulation of the SARS-CoV-2 fusion intermediate  
Color code for this and all subsequent figures, as for Figure 1. In addition, the N-terminal helices 
of the fusion peptides are shown orange. 
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(a) Snapshots of the FI during the ~ 0.4 µs	all-atom simulation of the model of Figure 1b. The FI 
undergoes large bending and extensional fluctuations.   
(b) Snapshot of the FI after 250 ns of the AA simulation. The RFH and HR2 domains (highlighted) 
show secondary structural plasticity. Relative to the prefusion structure, the RFH stem helices 
splayed into an inverted tripod that behaves as a mechanical suspension system for the BH and GP 
domains and the HR1-CH backbone. The HR2 secondary structure is dynamic. Bending of the FI 
stretched the outermost HR2 helices, triggering partial conversion into unstructured sections.  
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Figure 3. The fusion intermediate is highly flexible and visits a large capture volume  
(a) In coarse-grained MARTINI simulations the FI had large configurational fluctuations, 
measured by the extension and angle of orientation of the FI backbone (black curve).  
(b) Time averaged backbone curvature versus normalized backbone arclength. Three high 
curvature hinges are apparent (arrows). Each hinge region (red) was defined as the quarter width 
of a fitted Gaussian (orange). Green envelope indicates SD.   
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(c) Simulation snapshots with the three hinges highlighted, identified as residues 1084-1138, 1156-
1178 and 1204-1213.  
(d) Distributions of FI extensions and angles.   
(e) The FI has a large capture volume. Top and side views of FP locations visited. The FI extension 
and orientation ranges are ~21-30 nm and of ±56°, respectively (95% of sampled values) so that 
a large capture volume is swept out over time, shown schematically (left). Dashed circle: 
approximate region explored by the FP in 1 µs.   
(b), (d), (e) Statistics are averages over the last 4 µs of five 8 µs runs, for a total of 20 µs simulation 
time. 
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Figure 4. Multiscale simulations of the membrane-bound fusion peptide. 
 (a) Multiscale simulation strategy to measure secondary structure and spatiotemporal statistics of 
the membrane-bound FP. The prefusion structure is coarse-grained to MARTINI representation 
and bound to and relaxed within the membrane in a 24	µs simulation (binding required ~ 4	µs). 
Following backmapping to atomistic resolution, the secondary structure of the membrane-bound 
FP is relaxed in a 2 µs AA simulation. Assigning each residue its most frequently visited secondary 
structure during the final 0.8 µs of the AA simulation, the FP is again coarse-grained and its spatial 
dimensions and relaxation time measured in an 80 µs CG simulation.  
(b) Evolution of FP structure during the 2	µs AA simulation of (a). Initial and final states are 
shown. FP resides in one of three colors depending on the hydrophobicity. 
 (c) Evolution of bound FP secondary structure during the 2µs AA simulation of (a). The initial 
(prefusion) and final (equilibrated) structures are compared. For each residue the equilibrated 
structure shows the most frequently adopted in the final 0.8 µs.   
(d) Equilibrated bound FP following the AA equilibration of (a), schematic. The principal anchor 
is the amphiphilic N-terminal helix, with a secondary amphiphilic C-terminal helix anchor. 
Hydrophobicity color scheme as for (b).  
(e) Mean membrane insertion depth profile along the bound FP in the equilibrated structure 
represented in (c) (see Methods). Mean values over 0.8 µs.  
(f) Length and helix separation of the bound FP during the 80	µs	MARTINI simulation of (a). 
Mean dimensions averaged over the final 78	µs (left).  
(g) Temporal correlation function of the radius of gyration of the bound FP yields shape memory 
time 𝜏 = 269 ± 1	ns . (Bin size, 40 ns. 100 data points per bin.) Inset: log-lin representation. 
Dashed lines: exponential fit. Top view, schematic (right).  All error bars: SD. 
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Figure 5. Membrane binding kinetics of an isolated fusion peptide  
(a) Binding assay to measure the membrane binding rate constant, 𝑘>?@A9: , of a FP removed from 
its host FI. Initially the FP is positioned between two membranes separated by 5.5nm (left). FP 
dynamics are simulated using the CG MARTINI force field and the time to irreversibly bind the 
membrane is measured. The unbound fraction (blue, right) among ten simulated FPs decays 
exponentially with time constant 𝜏>?@A =  4.0	 ± 0.6	µs  (dashed orange curves). Inset: log-lin 
representation.  
(b) Typical binding event. The N-terminal helix (orange) is the first binding contact. To show 
secondary structure, the FP was back-mapped to all-atom representation.   
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Figure 6. Interaction of the fusion intermediate with a target membrane. 
(a) Snapshots from CG MARTINI simulations of the full FI in the presence of a target membrane 
20 nm from the viral membrane. The N-terminal helices of the FPs are shown orange. 
(b) Simulation of membrane binding by a truncated FI consisting of the HR1, CR and FP domains 
between two target membranes. Initial condition (left). Binding was mediated by the N-terminal 
FP helix (right).  
(c) Probability density versus distance 𝑧 of the nearest N-terminal FP helix from the membrane 
during simulations of membrane binding by the partial or full FI. In both cases the density is 
depleted close to the membrane. The net probability for the N-terminal helix of the FP to lie within 
1 nm of the membrane was 0.33% for the partial FI and 0.07% for the full FI (hatched areas).  
(d) Enforced binding of a FP. The FP N-terminal helix was pulled into the membrane over a period 
of 1.2 µs, and then released. The FP remained bound to the membrane for all of a 8 µs CG MD 
simulation.  
(e) The three FP-CR domains organize into a disordered laterally extended blob at the N-terminal 
end of the FI backbone, the FI head. Two FP N-terminal helices reside at one end of the head, one 
at the other end (orange stars). End view (perspective of red arrow) of N-terminal helix beads and 
their density distribution along the principal axis (dashed black line) in the plane normal to the 
backbone.  
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Figure 7. Model of the SARS-CoV-2 fusion intermediate and the pathway to fusion 
(a)  Schematic of the fusion intermediate. The ankle, knee and hip hinges impart high flexibility 
to the FI. RFH is an inverted tripod suspension system buffering longitudinal backbone 
fluctuations. GP supports the backbone and chaperones refolding. The CH-HR1 backbone 
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provides mechanical strength and reach. The FP-CR head houses the fusion peptides for host 
membrane capture.  
(b) Pathway to the fusion intermediate. Following dissociation of S2 from the S1/ACE2 complex, 
a loaded spring release mechanism generates the fusion intermediate after proteolytic cleavage at 
the S2′ site (upper pathway) or before cleavage (lower pathway). RBD, receptor binding domain 
of S1. TMPRSS2, transmembrane protease serine 2.  
(c) Schematic of host cell membrane capture by the fusion intermediate. Three base hinges endow 
the fusion intermediate with high flexibility and large configurational fluctuations, so the N-
terminal fusion peptides sweep out a large volume for membrane capture.  
(d) Model of fluctuation-triggered, GP-chaperoned refolding. A sufficiently large rotational 
fluctuation at the RFH/BH hip joint unfolds a RFH stem helix into an unstructured loop. The loop 
is grabbed by a GP 𝛽-strand in BH, initiating RFH refolding, and guided into a GP-CH groove 
which it packs as a leash. Leash zippering into the groove is stabilized by the GP catch, preventing 
unzippering. Refolding of the HR2 leash completes refolding of one protomer, pulling the 
membranes together and helping the other protomers refold. The trans postfusion structure 
catalyzes membrane fusion in cooperation with other refolded fusion proteins.  
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Supplementary Methods 
This section provides more detailed information for each simulation described in Methods.  
 
All-atom simulation of the fusion intermediate.  
The full-length fusion intermediate (FI, Fig. 1b) with its TMD inserted in the membrane was placed 
in a simulation box of 16 × 16 × 43	nm1. The membrane-protein system was built using the 
CHARMM-GUI membrane builder1, consisting of 786 lipids for the pure DPPC membrane. The 
termini and ionizable residues were treated in their charged states assuming neutral pH. The 
disulfide bond in FP was added according to the prefusion structure (PDB: 6XR8), while the 
disulfide bonds in the other domains, BH and GP, were added based on the postfusion structure 
(PDB: 6XRA, the disulfide bonds were conserved in the pre- and postfusion structures). The 
resulting simulation box contained approximately 300,000 water molecules and was neutralized 
with 150 mM NaCl ions. The TIP3P model was used for water2. 

The system was first energy-minimized for 1,000 steps. Then, 2 equilibrations in the NVT 
ensemble were each performed for 0.1	ns  with position restraints on all protein atoms. 
Subsequently, 4 equilibrations in the NPT ensembles were each performed for 0.5	ns with position 
restraints on protein heavy atoms. The production simulation was run for 406 ns in the NPT 
ensemble at 1 bar and 310 K and with a time step of  2	fs. The temperature and pressure were 
maintained using the Nose´-Hoover thermostat3,4 and Parinello-Rahman barostat5, respectively. 
All the energy-minimization, equilibration, and production simulations were performed using 
GROMACS 2019.66,7. The secondary structure of each residue in the FI was analyzed using the 
dssp algorithm8,9 for every 0.1 ns. 
 
Coarse-grained simulation of a fusion intermediate with uncleaved S2’ sites. 
Atomistic coordinates of the full-length fusion intermediate (Fig. 1b) were converted onto the 
MARTINI 2.2 topology using the martinize utility and placed in a simulation box of 
40 × 40 × 50	nm1. The unsolved C-terminal part of the GP domain in the postfusion structure10 
(residues 771-815) was forced to be a loop, by changing the input secondary structural file to the 
martinize utility. The terminal and ionizable residues were treated in their charged states assuming 
neutral pH. The box was then solvated by approximately 600,000 coarse-grained water particles 
and was neutralized by 150 mM NaCl ions. 

In each protomer, the FP N-terminus residue (residue 816) and the GP C-terminus residue 
(residue 815) were pulled together at a constant rate of 10 nm/µs by a harmonic potential with a 
force constant of 500	kJ	mol23	nm2$ . Position constrains by a harmonic potential with force 
constant of 1,000	kJ	mol23	nm2$ were applied to the beads in the domains other than GP, FP and 
CR. The pulling simulation took ~1.5 µs so that in the final configuration, the COG distance 
between residues 815 and 816 in one of the three protomers reaches ~0.5 nm. 

The final coordinates of the coarse-grained FI were then backmapped into atomistic 
resolution in CHARMM36 force field11,12. The residues 815 and 816 were covalently connected 
in the protomer with the smallest separation between the two residues, and this protomer was 
duplicated twice to make a trimer using Pymol. Now a structure of the FI with its S2’ sites 
uncleaved was created. Then, the all-atom structure of the FI with its S2’ sites uncleaved was 
converted into MARTINI coarse-grained representation using the martinize utility. A simulation 
box of 30 × 30 × 50	nm1 was generated using the insane utility, in which the coarse-grained FI 
with its S2’ sites uncleaved was inserted in a crystalline DPPC bilayer consisting of 2,831 coarse-
grained lipids that represented the viral envelope.  
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The system containing the coarse-grained FI with its S2’  sites uncleaved on the viral 
envelope was first energy-minimized for 2,000 steps in the vacuum. Subsequently, the box was 
solvated with approximately 300,000 coarse-grained water particles and neutralized with 150 mM 
NaCl ions. The system was then energy-minimized for 2,000 steps and equilibrated for 4 ns in 
NPT ensemble sampling. Then the system was subjected to a production simulation lasting 4	µs 
in the NPT ensemble. The system temperature, membrane tension, and system pressure were 
maintained at the same value using the same thermostat and barostat as mentioned above. 
 
Coarse-grained simulations of the fusion intermediate. 
Atomistic coordinates of the modeled full length fusion intermediate (Fig. 2a) were converted onto 
the secondary structure based coarse-grained MARTINI 2.2 topology13,14 using the martinize 
utility. The termini and ionizable residues were treated in their charged states assuming neutral pH. 
Disulfide bonds were added to the same residues as in the all-atom simulation. The simulation box 
of 30 × 30 × 50	nm1 was generated using the insane utility15, in which the coarse-grained (CG) 
FI with its TMD inserted in a crystalline DPPC bilayer consisting of 3,024 coarse-grained lipids 
that represents the viral envelope. 

The system was first energy-minimized for 2,000 steps in vacuum. Subsequently, the box 
was solvated with approximately 300,000 coarse-grained water particles and neutralized with 150 
mM NaCl ions. The system was then energy-minimized for 2,000 steps and equilibrated for 4 ns 
in NPT ensemble sampling. Then the system was subjected to 5 independent production 
simulations, each lasting 8	µs in the NPT ensemble. Equations of motion were integrated using 
the Verlet leapfrog algorithm with a 80	fs time step. Bonds were constrained with the LINCS 
algorithm. The system temperature (310K) was maintained by the velocity rescale thermostat16. 
The membrane tension (0.05 pN/nm) and the system pressure (1 bar) were maintained by the 
Berendsen barostat with surface-tension coupling17. 
 
Fitting a curve to the fusion intermediate ectodomain 
To fit a curve to represent the FI ectodomain backbone (residues 912-1237) in the MARTINI 
simulations of the FI (Figs. 3 and S2), we first represented the backbone by points. Each point 
represented a residue and its position was calculated by the averaged position of the MARTINI 
backbone bead (the non-sidechain bead) of each residue among the three protomers. The 
coordinates of the beads were extracted from the simulation trajectory using the mdtraj18 python 
package. Then the FI backbone was divided into an upper part (residues 912-1191) and a lower 
part (1152-1237) with an overlapping region of 40 residues. Each part was separately smoothed 
by the following steps. (1) All points (𝑥?, 𝑦?, 𝑧?) were calibrated so that the center of gravity (COG) 
was at the origin, (2) All points were rotated so that the new x,y,z axis are aligned with the 
eigenvectors of the gyration tensor of the rotated points (𝑥?a, 𝑦?a, 𝑧?a). This rotation maximized the 
root mean square projected length onto the 𝑧 axis. (3) A smoothed curve (𝑥bac , 𝑦bac , 𝑧?a) was generated 
by the LOWESS algorithm in python, in which the smoothed 𝑥bac  and 𝑦bac  value for each 𝑧?a was set 
by its neighboring points spanning one tenth of the entire z range. Then the smoothed upper/lower 
part was rotated back to the original orientation and the overlapping region was averaged between 
the upper/lower parts. Finally the reconnected points were smoothed by the B-spline method with 
4th order polynomial functions. To find the location (from the N- to the C-terminus) of each domain 
on the fitted the curve, the curve was first reparametrized by its normalized arclength. The location 
of each residue was determined as the normalized arclength of the nearest point on the fitted curve 
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to the position of this residue averaged over the three protomers, using only the backbone bead to 
locate the residues.  
 
The isolated fusion peptide binding assay. 

The atomistic structure of the fusion peptide (FP, residue 816-855) was extracted from the 
crystal structure of the prefusion structure (PDB: 6XR8). Then the atomistic structure of the FP 
was coarse-grained into the MARTINI representation. The ionizable residues were treated in their 
charged states assuming neutral pH. The C-terminal carboxyl group at residue 855 was neutralized 
by changing the type of the backbone bead from Qa to Na and changing the backbone bead charge 
from -1 to 0 in the itp topology file, as the residue 855 connects CR in the full-length FI. The 
disulfide bond was added according to the solved prefusion structure (PDB: 6XR8). The coarse-
grained FP was placed approximately 1 nm above a crystalline DPPC bilayer consisting of 162 
coarse-grained lipids in a 7 × 7 × 10	nm1  box using the insane utility15. By implementing 
periodic boundary condition, this is equivalent to placing a FP between two planar membranes 
separated by ~5.5 nm.The system was first energy-minimized for 500 steps in vacuum. 
Subsequently, the box was solvated with approximately 2,000 coarse-grained water particles and 
neutralized with 150 mM NaCl ions. The system was then energy-minimized for 500 steps and 
equilibrated for 4 ns in the NPT ensemble with a 80	fs time step. Then the system was subjected 
to 10 independent production simulations, each lasting 24	µs in the NPT ensemble. The system 
temperature (310K) was maintained by the velocity rescale thermostat16. The membrane tension 
(0.05 pN/nm) and the system pressure (1 bar) were maintained by the Berendsen barostat with 
surface-tension coupling17. A binding event was defined to be when the z coordinate of the FP 
COG first had a value that positioned it below the upper membrane leaflet and above the lower 
membrane leaflet, where the leaflet locations were defined as the average locations of the PO4 
beads in each leaflet.  
 
All-atom simulation of a membrane-bound fusion peptide. 
In one of the CG simulations in the FP-only binding assay, the final configuration of the FP and 
the membrane to which it was bound is converted to atomic resolution in CHARMM36 force 
field11,12 using the backward utility19. The ionizable residues are treated in their charged states 
assuming neutral pH. The C-terminal carboxyl group is neutralized. The Disulfide bond is added 
to the same residues as in the FP-only binding assay. The resulting simulation box contained 
approximately 9,000 water molecules and was neutralized with 150 mM NaCl ions. The TIP3P 
model was used for water2. 

4 equilibrations in the NVT and NPT ensembles were each performed for 50	ns with 
position restraints on peptide heavy atoms. The production simulation was run for 2	µs in NPT 
ensembles at 1 bar and 310 K and with a time step of  2	fs. The temperature and pressure were 
maintained using the Nose´-Hoover thermostat3,4 and Parinello-Rahman barostat with isotropic 
coupling5, respectively. The secondary structure of each residue in the FP was analyzed using the 
dssp algorithm8,9 for every 0.1 ns. The membrane insertion depth of each FP residue was defined 
as the vertical distance between the residue COG and the COG of PO_4 groups in the membrane 
leaflet to which the FP was bound. 
 
 
 
Coarse-grained simulations of an equilibrated fusion peptide bound to a membrane. 
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In the AA simulation of a membrane-bounded FP simulation, the final configuration of the FP and 
the membrane to which it was bound was converted to MARTINI CG representation using the 
martinize utility. The ionizable residues were treated in their charged state. The C-terminal 
carboxyl group was neutralized. 

The system was first energy-minimized for 1,000 steps in the vacuum. Subsequently, the 
box was solvated with water particles and ions to attain a salt concentration of 0.15 M. The system 
was then energy-minimized for 5,000 steps and equilibrated for 0.8 ns in the NPT ensemble. Then 
the system was subjected to the production simulation for 80	µs in the NPT ensemble. The system 
temperature (310K) and pressure (1 bar) were maintained by the velocity rescale thermostat and 
Parinello-Rahman barostat, respectively.  

The membrane insertion depth of each residue was defined in the same way as for the AA 
simulation (see above). The gyration tensor 𝑀 of the FP was defined as 

𝑀 = 3
e
∑ (𝑟? − 𝑟i)⨂(𝑟? − 𝑟i)e
?k3 , 

where ⨂ represents the dyadic product, 𝑟? is the coordinate of the ith bead in the FP, 𝑁 is the total 
number of beads, and ri is the COG of the FP, as ri = ∑ rne

nk3 /𝑁. The radius of gyration 𝑅o was 
computed as the square root of the trace of 𝑀. The length and the width of the FP were defined as, 
respectively, greater and smaller of the eigenvalues of 𝑀 projected onto the x-y plane, and the 
thickness was defined as p𝑀qq.   
 
Coarse-grained simulations of the fusion intermediate interacting with a target membrane. 
For ten of the simulations of the FI interacting with a target membrane, ten snapshots from three 
FI simulations (one membrane) were chosen as the initial condition in which the FI ectodomain 
protruded ~20 nm normal to the membrane. Another pre-equilibrated planar membrane (run for 4 
µs) was placed 20 nm above the membrane anchoring the FI in the selected configurations. Each 
configuration containing an FI and two membranes was re-solvated by approximately 200,000 
coarse-grained water particles and neutralized by 150 mM NaCl ions. Then, each of the 10 systems 
was equilibrated for 4 ns, and subject to a production simulation for 8 µs in the NPT ensemble. 
The system temperature (310K) was maintained by the velocity rescale thermostat. The membrane 
tension (0.05 pN/nm) of the two membranes and the system pressure (1 bar) was maintained by 
the Berendsen barostat with surface-tension coupling.  

In an additional set of simulations, all ten runs started from a biased initial condition, in 
which the COG of the nearest N-terminal FP helix was within 1 nm of the adjacent membrane and 
the FI head was in the (1,2) configuration. Here, the membrane position was defined to be the 
mean location of all the PO4 beads in the lower leaflet of the upper membrane. Each production 
simulation lasted 22.4	µs with the same system temperature, pressure and the membrane tension.    

 
Coarse-grained simulations of membrane binding by the partial fusion intermediate. The 
structure of the HR1, CR and FP domains in the MARTINI CG representation was extracted from 
the final configuration of a simulation of the FI interacting with a target membrane. The ionizable 
residues were treated in their charged states assuming neutral pH. The C-terminal carboxyl group 
at residue 984 was neutralized by changing the type of the backbone bead from Qa to Na and 
changing the backbone bead charge from -1 to 0 in the itp topology file, as the residue 984 connects 
CH in the full-length FI. This partial FI was positioned above ~ 0.5 nm above a crystalline DPPC 
bilayer consisting of 676 coarse-grained lipids in a 20 × 20 × 13 𝑛𝑚1 box with periodic boundary 
conditions, equivalent to two planar membranes separated by ~8.3 nm.  
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The system was first energy-minimized for 500 steps in vacuum. Subsequently, the box 
was solvated with approximately 26,000 coarse-grained water particles and neutralized with 150 
mM NaCl ions. The system was then energy-minimized for 2,000 steps and equilibrated for 4 ns 
in the NPT ensemble with a 80	fs time step. Then the system was subjected to 6 independent 
production simulations, each lasting 160	µs in the NPT ensemble. The system temperature (310K) 
was maintained by the velocity rescale thermostat16. The membrane tension (0.05 pN/nm) and the 
system pressure (1 bar) were maintained by the Berendsen barostat with surface-tension coupling17.  

The exact time for a binding event was defined to be when the vertical distance between 
the FP N-terminal helix COG and the membrane first had a value smaller than the averaged FP-
membrane distance when the partial FI was stably bound. The membrane locations were defined 
as the average locations of the PO4 beads in leaflet to which the partial FI was bound.   

To infer the averaged binding time 𝜏 of a partial FI, we assumed that at time 𝑡 the unbound 
probability 𝑃 follows an exponential function 𝑃 = exp	(−𝑡/𝜏). Given that at the end of the six 
simulations 𝑡 = 160	𝜇𝑠 the unbound probability is 4/6, we estimated 𝜏 = 390 ± 280	µ𝑠, where 
the uncertainty of the estimation is obtained using from error propagation.  
 
 
Pulling the fusion peptide into the target membrane.  
An initial condition was chosen with the nearest N-terminal FP helix lying within 1 nm of the 
membrane and with the FI head in the (1,2) configuration. The FP N-terminal helix was pulled 
vertically towards the upper membrane at a constant rate of 2.5 nm/µs by a harmonic potential 
with a force constant of 1,000	kJ	mol23	nm2$. The system temperature, membrane tension, and 
system pressure were maintained at the same value using the same thermostat and barostat as 
mentioned above. The pulling process took ~1.2 µs. In the final configuration the distance between 
the COG of the FP N-terminal helix and the COG of the entire upper membrane reached ~0.1 nm, 
and the FP N-terminal helix was pulled into the adjacent membrane patch by ~1 nm. Then the 
force was released and a subsequent 8 µs CG simulation was run, in which the system temperature, 
membrane tension, and system pressure were maintained at the same value using the same 
thermostat and barostat. 
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Supplementary Figures 
 

 
 
 
Supplementary Figure 1. Simulation of the fusion intermediate with uncleaved S2’ sites.  
(a) Construction procedure for a fusion intermediate with uncleaved S2’ sites. Starting from the 
model structure in Fig. 2b, the C-terminus of three GPs and the N-terminus of three FPs were 
pulled together in ~1.5 µs in a MARTINI CG simulation. Then the C-terminus of GP and the N-
terminus of FP in one protomer were connected covalently (stars). This protomer was duplicated 
twice to generate a FI homotrimer with uncleaved S2’ sites.  
(b) Snapshot from a 4 µs simulation. The fusion peptides (green) are sequestered. The FI with 
uncleaved S2’ sites exhibits similar flexibility to the normally cleaved FI.  
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Supplementary Figure 2. Evolution of the secondary structure of the fusion intermediate 
during 406 ns of all-atom simulation.  
The secondary structure of each residue was measured every 0.1 ns during the AA simulation (Fig. 
2). Each panel refers to one protomer of either the main body of the S2 subunit (top row) or the 
cleaved GP (bottom row). The secondary structure of the fusion intermediate model of Figure 1b 
is shown to the right of each panel for comparison.  
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Supplementary Figure 3. Fitting a curve to represent the fusion intermediate ectodomain.   
(1) The coordinate of each coarse-grained bead is extracted by Python package mdtraj. (2) Each 
residue is represented by one point, averaged over three protomers. The upper part of the FI (blue, 
residues 912-1191) and the lower part (red, residues 1152-1237) are separated. (3) The upper and 
the lower parts are rotated so that the three principal axes are aligned with three eigenvectors of 
the gyration tensor of the rotated points. The rotated points are smoothed by the LOWESS 
algorithm. (4) The upper and lower parts are rotated back to their original orientations and 
reconnected. The overlapping region (purple, residues 1152-1191) is averaged over the upper and 
lower parts. (5) The final curve is fitted by the B-spline method.  
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Supplementary Figure 4. Time averaged backbone curvature versus normalized backbone 
arclength for five parallel runs. The three hinges (Fig. 3b, arrows) show different magnitudes of 
curvature in the five parallel runs. Green envelope indicates SD. 
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Supplementary Figure 5. Fusion peptide residue insertion depth measured in MARTINI 
coarse-grained simulations.  
The insertion depth is defined as the vertical distance between the center of gravity (COG) of each 
fusion peptide residue and the COG of the PO4 beads in the leaflet to which the fusion peptide is 
bound (same definition as for the all-atom simulation). The secondary structure used is (a) the 
equilibrated secondary structure from the all-atom simulation, and (b) the equilibrated secondary 
structure but imposing the C-terminal helix to be a loop. The insertion depths are averaged over 
the last 78 µs. Error bars: SD over the same time frame. Bars were colored by the hydrophobicity 
of the corresponding residues (red: hydrophobic, grey: neutral, blue: hydrophilic), using the same 
color scheme as in Fig. 4b.  
 
  



 42 

 
 
Supplementary Figure 6. MARTINI simulation snapshot showing a transient detachment of 
the fusion peptide C-terminal helix  
The fusion peptide C-terminal helix (purple) unanchored transiently from the membrane for ~0.3 
µs (the instance depicted here occurred after ~52 µs of the simulation). In contrast, the N-terminal 
helix (orange) always remained buried in the membrane. 
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Supplementary Figure 7. Measured length, width and thickness versus time of the fusion 
peptide during the MARTINI coarse-grained simulation of an equilibrated fusion peptide 
bound to a membrane.  
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Supplementary Figure 8. Correlation times of the fusion peptide shape properties during 
MARTINI coarse-grained simulation of an equilibrated fusion peptide bound to a 
membrane.   
The radius of gyration, length, width, thickness and insertion depth of the fusion peptide are 
calculated for the last 78 µs of the MARTINI simulation. The radius of gyration, length, width and 
thickness are calculated from the gyration tensor (see “Methods”). The insertion depth of the entire 
fusion peptide is defined as the vertical distance between the center of gravity of the fusion peptide 
and the center of gravity of the PO4 beads in the leaflet to which the FP is bound. The correlation 
time is calculated in the same way as in Fig. 4g. Error bars: 95% confidence interval.  
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Supplementary Figure 9. Evolution of fusion peptide vertical position during a binding assay 
of an isolated fusion peptide.  
(a) Evolution of the center of gravity of the fusion peptide (blue). The vertical positions of the two 
leaflets to which the FP is likely to bind are calculated by averaging the PO4 bead positions in each 
leaflet (black). A collision event is defined as an approach to the membrane to within 
𝑅9:	~	1.6	nm of either leaflet (black), where 𝑅9: is the rms FP end-to-end distance. A binding 
event is defined to be when the FP center of gravity first has a value that positioned it below the 
upper membrane leaflet and above the lower membrane leaflet (green arrow).  
(b) Evolution of the center of gravity of the fusion peptide N-terminal helix (blue). The positions 
of the two leaflets are defined in the same way as for (a). Before the binding event, the N-terminal 
helix approached several times to within 1 nm of either leaflet (red).  
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Supplementary Figure 10. Distance of the nearest FP N-terminal helix from the membrane 
versus time in three runs. Here the position of the nearest FP N-terminal helix was defined to be 
its COG location. The membrane position was defined to be the mean location of all the PO4 beads 
in the lower leaflet of the upper membrane.  
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Supplementary Movies 
 
Supplementary Movie 1. All-atom simulation of the SARS-CoV-2 fusion intermediate. The 
color code is as for Fig. 2.  
 
Supplementary Movie 2. Coarse-grained MARTINI simulation of the SARS-CoV-2 fusion 
intermediate. The three hinges are colored according to the code of Fig. 3c.  
 
Supplementary Movie 3. Simulation of Movie 2 with the fitted curve. A fitted curve (red) to 
the ectodomain backbone of the fusion intermediate (blue) whose TMD is anchored in the viral 
envelope (green).  
 
Supplementary Movie 4. All-atom simulation of a membrane-bound fusion peptide (side 
view). The residues are colored according to their hydrophobicity, using the color scheme of Fig. 
4b.  
 
Supplementary Movie 5. Simulation of Movie 4, top view.  
 
Supplementary Movie 6. Coarse-grained MARTINI simulation of an equilibrated fusion 
peptide bound to a membrane (side view). The N-terminal helix (orange) was always buried in 
the membrane, but after ~52 µs of the simulation the C-terminal helix (purple) transiently 
unanchored from the membrane for ~0.3 µs.   
 
Supplementary Movie 7. Simulation of Movie 6, top view.  
 
Supplementary Movie 8. Binding assay for an isolated fusion peptide (coarse-grained 
MARTINI simulation). The fusion peptide, removed from the FI, becomes bound to the 
membrane after ~1.6 µs, with the N-terminal helix (orange) providing first stable contact. The 
fusion peptide remains bound for the remaining ~22.4 µs of the simulation. The binding events of 
Fig. 5b are snapshots from this movie.  
 
Supplementary Movie 9. Simulation of the fusion intermediate interacting with a target 
membrane, 8 𝛍𝐬	 duration. One of the fusion peptide N-terminal helices (green spheres) 
repeatedly approaches the membrane to within 1 nm, but fails to bind. Fig. 6e shows a snapshot 
from this movie.  
 
Supplementary Movie 10. Binding assay of a partial fusion intermediate (coarse-grained 
MARTINI simulation, first 50 µs). The partial FI consisting of the FP, CR and HR1 domains 
becomes bound to the membrane after ~23 µs. The color code is as for Fig. 6b.  
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